

Strategie di prima linea nelle LAL B Ph—: il ruolo dell'immunoterapia

Renato Bassan

Disclosures of Renato Bassan, 2024-2025

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
IQVIA (2024)*							

^{*}Amgen-sponsored Consensus on epidemiology and Italian clinical practice in early-stage ALL (part 1)

Objective: 100% cure rate up-front

- ➤ How much to do? What the challenge(s)? (current cure rate around 50%*)
- Worst subsets ahead
- Target-focused approaches vs cancer complexity (Bredberg A, Front Oncol 2025)

* Pre-immunotherapy trials, age range 18-65 years

Many years ago

TREATMENT OF ACUTE LEUKEMIA IN ADULTS

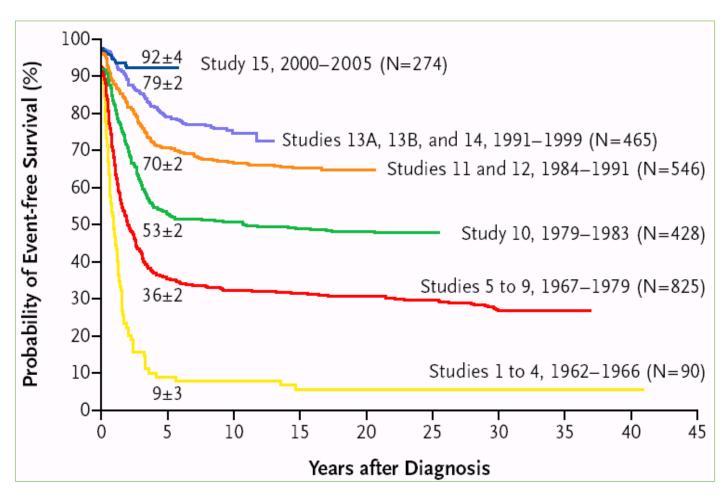
BAYARD D. CLARKSON, MD, MONROE D. DOWLING, MD, TIMOTHY S. GEE, MD, ISABEL B. CUNNINGHAM, AND JOSEPH H. BURCHENAL, MD

Fig. 11. Survival of children and adults with ALL treated with the L-2 protocol (life-table analysis).

A Four-Year Experience with Anthracycline, Cytosine Arabinoside, Vincristine and Prednisone Combination Chemotherapy in 325 Adults with Acute Leukemia

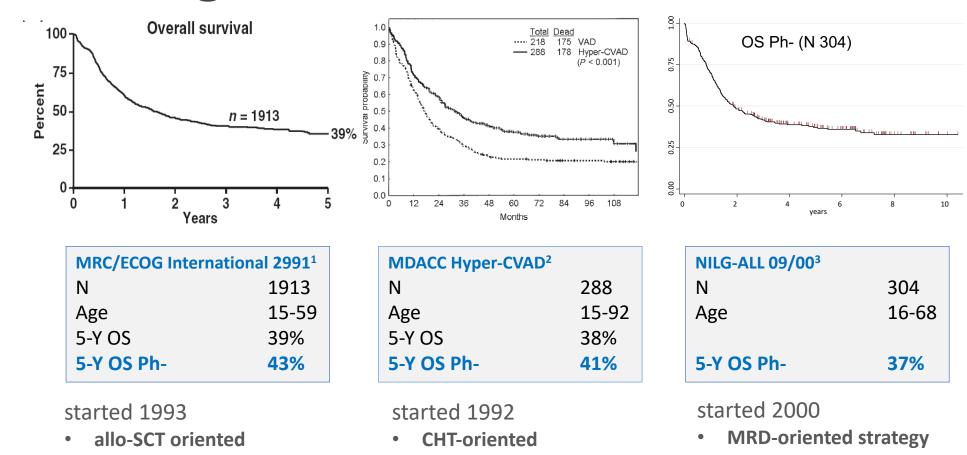
M. J. KEATING, MB, BS, T. L. SMITH, BS, K. B. MCCREDIE, MB, BS, G. P. BODEY, MD, E. M. HERSH, MD, J. U. GUTTERMAN, MD, E. GEHAN, PHD, AND E. J FREIREICH, MD

Cancer 1981


Fig. 1. Duration of hematologic remission according to morphologic diagnosis.

Venezia | 20 novembre 2025

Ospedale SS. Giovanni & Paolo


Better in children with chemo intensification

St. Jude's Hospital trials 1962-2005

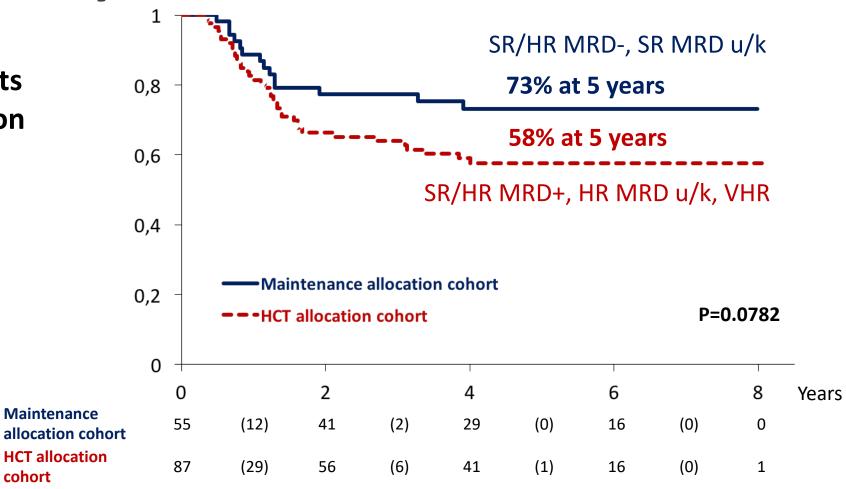
C-H Pui. Semin Hematol 50:185-196. 2013

Years of stagnation/frustration

¹Goldstone AH et al, Blood 2008; ²Kantarjian H et al, Cancer 2004; ³Bassan R et al, Blood 2009 (updated EHA 2013 and Blood Cancer J 2014)

Then some good news

- > Ph+ ALL on its own (TKI-based therapy, allo-SCT)
- ➤ Ph— ALL to modern pediatric-type therapy with risk/MRD-oriented allo-SCT
- > Immunotherapy in B-ALL

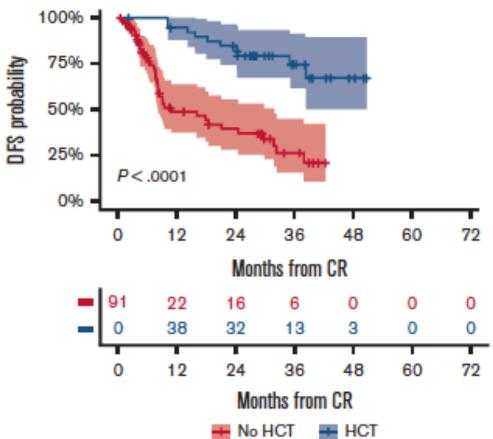

Risk-oriented study NILG 10/07

Maintenance

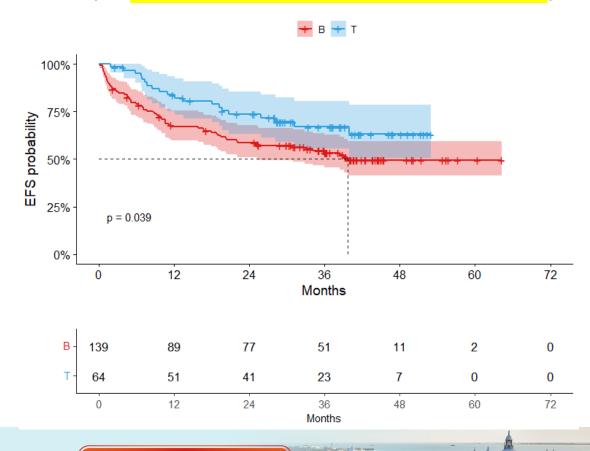
HCT allocation

cohort

Survival of CR patients by treatment intention (age <u>18-67</u> Y)

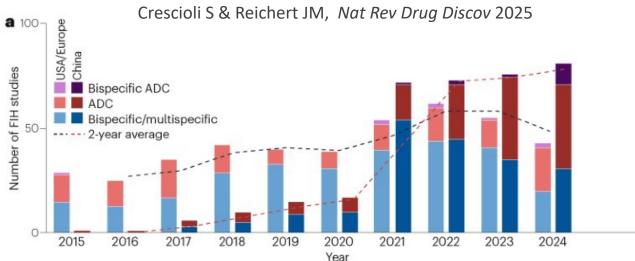

Bassan R et L, Blood Cancer J 2020

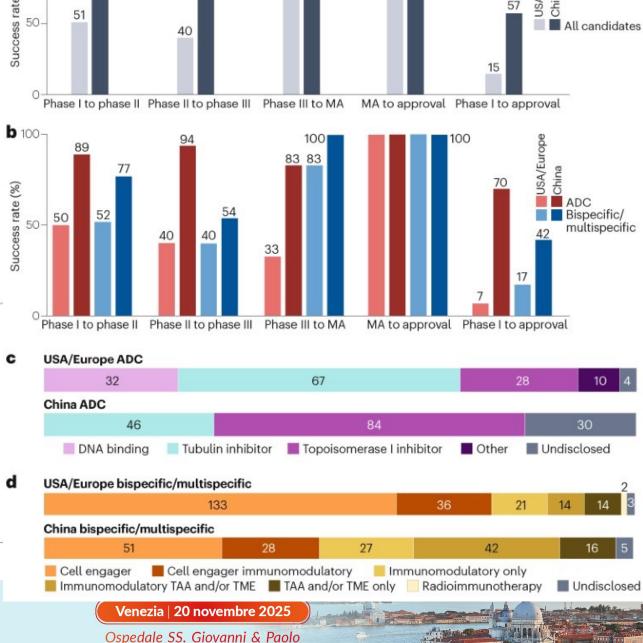
Risk-oriented study GIMEMA 1913


N = **203**, age **18-65** years, CR 91%

•HCT allocation group (for special attention)

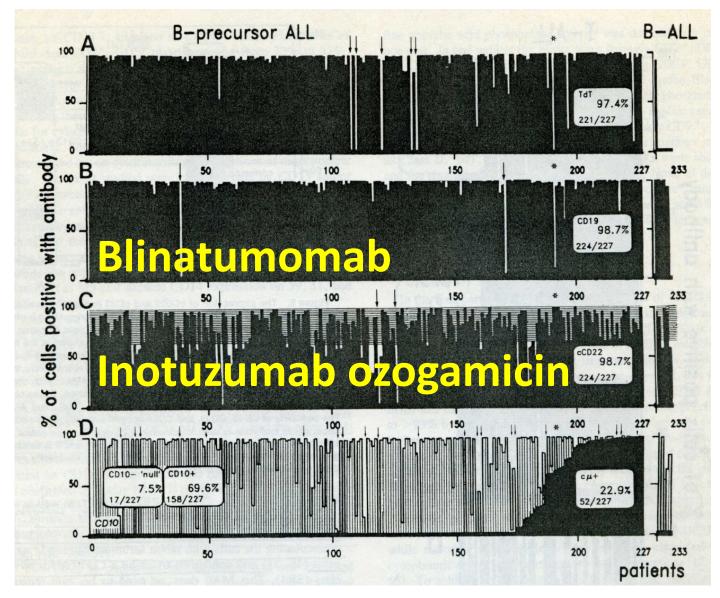
EFS by B- or T-ALL subset


(→ new immunotherapy option for B-ALL)



The ongoing bispecifics and ADCs revolution

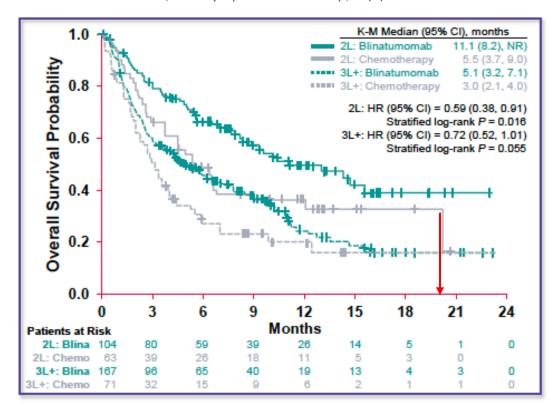
a 100-



LEUCEMIE ACUTE LINFOBLASTICHE (LAL):

dove siamo e dove stiamo andando?

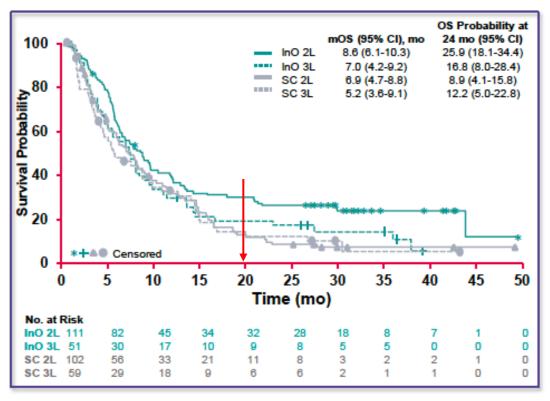
CD19 and CD22 B-cell antibody targets


from Janossy G, Coustan-Smith E, Campana D. Leukemia, 1989

Survival after Blinatumomab or Inotuzumab (R/R)

TOWER

Dombret H et al., Leuk Lymphoma. 2019 Sep;60(9):2214-2222



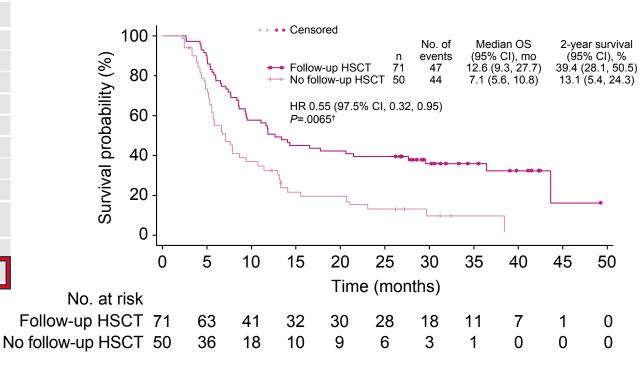
In adults with Ph- R/R B-ALL treated with blinatumomab or chemo in 2L or 3L+, median OS:1

- 2L: blinatumomab (n=104), 11.1 mo (95% Cl 8.2–NE); chemo (n=63): 5.5 mo (95% Cl, 3.7–9.0)
- 3L+: blinatumomab (n=167), 5.1 mo (95% Cl 3.2–7.1); chemo (n=71), 3.0 mo (95% Cl 2.1–4.0)

INO-VATE

Jabbour E et al, *Leuk Lymphoma*. 2020; **61**: 2012-2015

In a study of adults with R/R ALL treated with inotuzumab (n=164) or chemo (n=162), a subgroup analysis by treatment line showed 2-year OS rates:2


- 2L: inotuzumab, 25.9% (95% CI 18.1–34.4); chemo, 8.9% (95% CI 4.1–15.8)
- 3L: inotuzumab, 16.8% (95% CI 8.0–28.4); chemo, 12.2% (95% CI, 5.0–22.8)

Survival of **Blinatumomab**-treated patients according to follow-up **SCT** (**NEUF**)

	MRD+		R/R B-cell ALL	
	All MRD+ (n = 56)	$Ph-(n=50)^{a}$	$Ph^{-b} (n = 29)$	
Mortality following HSCT, % (95% CI) ^d				
3 months	5.5 (1.9-16.3)	4.1 (1.1-15.2)	10.7 (3.4-34.0)	
6 months	5.5 (1.9-16.3)	4.1 (1.1-15.2)	14.8 (5.8-37.4)	
12 months	10.1 (4.3-23.8)	9.0 (3.3-24.4)	19.3 (9.3-40.4)	
Events, n (%)				
Nonrelapse deaths	6 (11)	5 (10)	5 (17.2)	
Relapse	11 (20)	11 (22)	8 (27.6)	
Death due to undocumented relapse	3 (5)	3 (6)	2 (6.9)	
Death due to unknown causes	1 (2)	1 (2)	0 (0.0)	
Patients alive without relapse	34 (61)	29 (58)	14 (48.3)	

Survival of **InO**-treated patients according to follow-up **SCT (INO-VATE)**

Boissel N et al. Blood Cancer J 2023;13:2

Kantarjian HM et al. Cancer 2019;125:2474-2487

Frontline blinatumomab and/or inotuzumab

Viewpoint

Frontline treatment of adults with newly diagnosed B-cell acute lymphoblastic leukaemia

Ibrahim Aldoss, Gail J Roboz, Renato Bassan, Nicolas Boissel, Daniel J DeAngelo, Shaun Fleming, Nicola Gökbuget, Aaron C Logan, Selina M Luger, Tobias Menne, Jae Park, Andre C Schuh, Bijal Shah, Elias Jabbour

In the past decade, there has been considerable progress in the treatment of adults with newly diagnosed B-cell acute lymphoblastic leukaemia. This evolution is the product of a more profound understanding of acute lymphoblastic leukaemia biology, innovations in measurable residual disease quantification that led to precise disease-risk stratification, adoption of contemporary paediatric-inspired regimens, inclusion of tyrosine kinase inhibitors in the treatment of Philadelphia chromosome-positive acute lymphoblastic leukaemia, and the introduction of immunotherapy in the frontline setting. Nevertheless, outcomes of acute lymphoblastic leukaemia in adults are inferior compared with those of children, with excessive rates of treatment failure, and therapy-related morbidity and mortality. Simultaneously, transplant consolidation has continued to be used frequently for high-risk adults with acute lymphoblastic leukaemia in first complete remission. Considering the rapid pace of evolution in acute lymphoblastic leukaemia management, novel trial designs are warranted to accelerate advancements and streamline approaches. Here, we summarise progress in the treatment of adults with newly diagnosed acute lymphoblastic leukaemia, which adds to previously published guidelines by focusing specifically on first-line decisions for B-cell acute lymphoblastic leukaemia and how to best personalise treatment. This Viewpoint also includes experiences with regimens and testing approaches currently available not only in Europe, but also on multiple continents with different practices and resources.

Lancet Haematol 2024; 11: e959-70

Department of Hematology and Hematopoletic Cell Transplantation, City of Hope, Duarte, CA, USA (IAldoss MD): Clinical and Translational Leukemia Program, Weill Medical College of Cornell University, New York, NY, USA (Prof G J Roboz MD): Department of Hematology, Ospedale SS Giovanni e Paolo, Mestre Venezia, Italy (R Bassam MD): Department of Hematology, Höpital Saint-Louis, AP-HP, Institut de Recherche Saint-Louis de

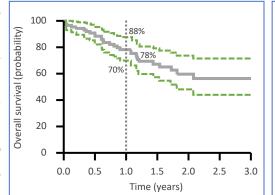
Incorporation of Immunotherapy Into Adult B-Cell Acute Lymphoblastic Leukemia Therapy

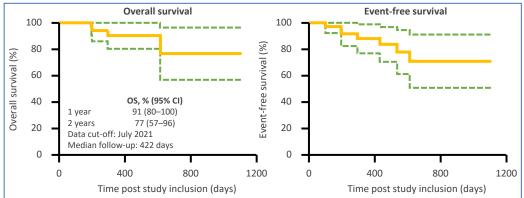
Fadi G. Haddad, MD¹; Hagop Kantarjian, MD¹; Nicholas J. Short, MD¹; Nitin Jain, MD¹; Jayastu Senapati, MD¹; Farhad Ravandi, MD¹; and Elias Jabbour, MD¹

Abstract

Blinatumomab and inotuzumab ozogamicin have demonstrated efficacy in treating relapsed/refractory B-cell acute lymphoblastic leukemia (B-ALL) and improving outcomes compared with conventional chemotherapy. Encouraging results have been observed in both younger and older patients with Philadelphia chromosome (Ph)-positive and Ph-negative B-ALL treated with these immunotherapy agents across several clinical trials. Treatment with inotuzumab ozogamicin and/or blinatumomab leads to high rates of deep measurable residual disease negativity and may enhance survival compared with chemotherapy-only approaches, reducing the need for intensive chemotherapy, and potentially the need for allogeneic stem cell transplantation. Herein, we review the incorporation of blinatumomab and/or inotuzumab ozogamicin into frontline B-ALL regimens, including the potential use of chemotherapy-free approaches in select patient subgroups. We also explore the potential role of CAR T-cell therapies in the frontline setting for high-risk patients, as well as novel strategies to further improve outcomes in patients with B-ALL.

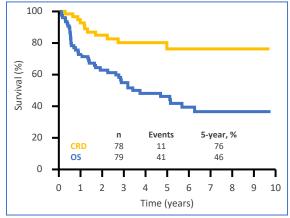
J Natl Compr Canc Netw, doi:10.6004/jnccn.2025.7050 Published online July 14, 2025


2024 2025

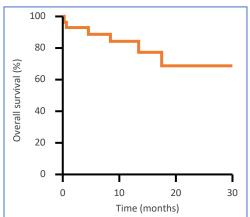


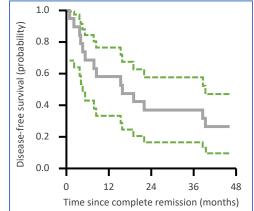
Improved outcomes in elderly ALL

Fractionated InO With Low-Intensity Chemotherapy in Older Patients With ND CD22+ Ph- B ALL: First Results from EWALL-INO Multicenter Phase 2 Study¹ N=90, CR 85.5% MRD_{neg} NR



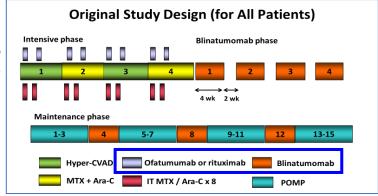
Phase 2 German Multicenter
Study Using InO for
Induction Therapy, Followed
by a Conventional
Chemotherapy in Patients
≥56 Years With ND B-ALL
(INITIAL-1 Trial)²
N=42, CR 100%
MRD_{neg} 74%


Phase 2 Study of Mini-Hyper-CVD
Plus InO ±
Blina in Patients

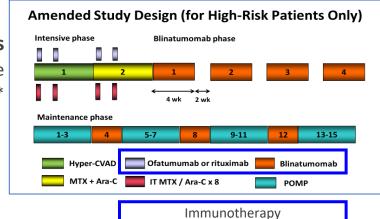

Blina in Patients
≥60 Years with
ND Ph- B-ALL³
N=75, CR 99%
MRD_{neg} 96%

Reduced Chemotherapy and **Blina** for **Older Patients** with B-ALL: GMALL Bold Trial⁴ **N=34. CR 76%**

MRD_{neg} 69%

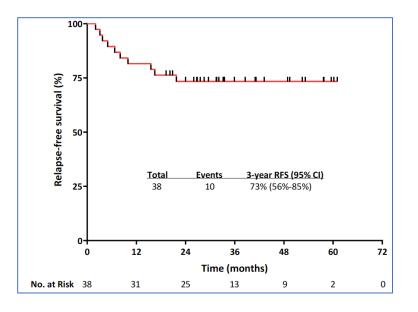

SWOG Study of **Blina**Induction Monotherapy
and POMP Maintenance
In **Elderly** (66–84 years,
median 75 years) PhALL⁵
N=29, CR 66%
MRD_{neg} 92%

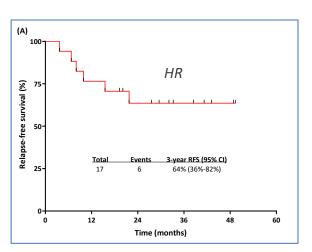
• 1. Chevallier P, et al. Blood 2021;138(Supplement 1):511; 2. Stelljes M, et al. Blood 2021;138(Supplement 1):2300; 3. Short NJ, et al. Blood 2021;138(Supplement 1):3400; 4. Gökbuget N, et al. Blood 2021;138(Supplement 1):3399–401; 5. Advani AS, et al. J Clin Oncol 2022;40:1574–82.


MDACC phase 2 study in adults

50% less intensive chemo*

*vs standard hyper-CVAD regimen

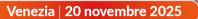

75% less intensive chemo*




Jabbour ES, et al. Lancet Haematol 2022 (Online ahead of print).

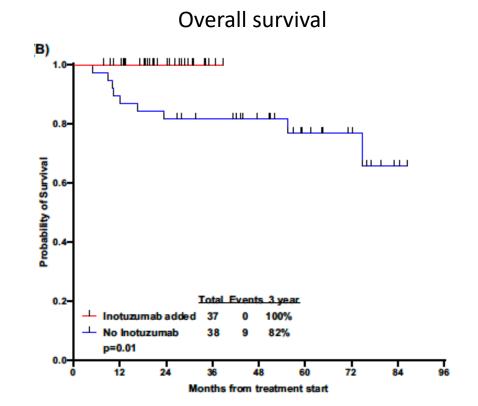
MD Anderson Cancer Center

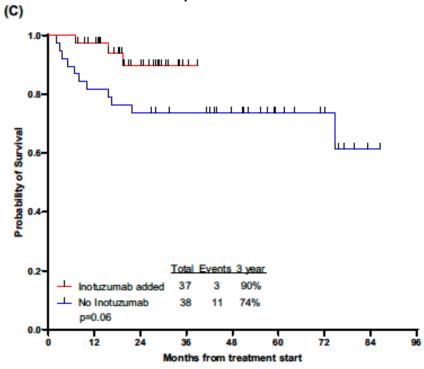
- **N=38**: CR 100%, MRD_{neg} 76–97%
- **3-yr RFS 73%**, 3-year RFS HR 64%



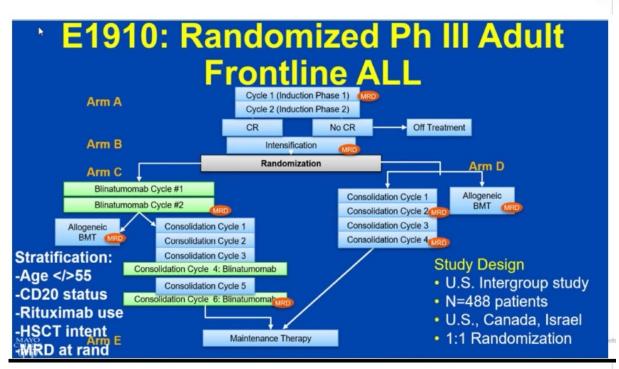
• A-SCT, allogeneic stem cell transplantation.

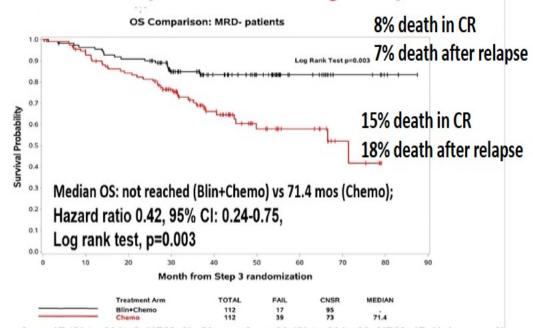
LEUCEMIE ACUTE LINFOBLASTICHE (LAL):


dove siamo e dove stiamo andando?

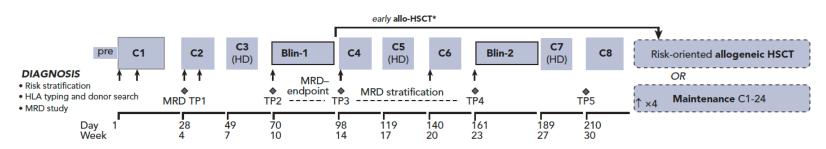

Ospedale SS. Giovanni & Paolo

Hyper-CVAD and Sequential Blinatumomab Without and With Inotuzumab in Young Adults With Newly Diagnosed Philadelphia Chromosome-Negative B-Cell Acute Lymphoblastic Leukemia


Relapse-free survival


American Journal of Hematology, 2025; 100:402–407 https://doi.org/10.1002/ajh.27576

ECOG-ACRIN phase 3 study in adults 30-70 years


STUDY PATIENTS: MRDneg prior to Blinatumomab

Deaths on Blin+Chemo Arm=17 (2° to ALL=8, NRM=9), Chemo Arm=39 (2° to ALL=20, NRM=17, Unknown=2)

Litzow M et al, NEJM 2024

Regular Article

CLINICAL TRIALS AND OBSERVATIONS

Up-front blinatumomab improves MRD clearance and outcome in adult Ph⁻ B-lineage ALL: the GIMEMA LAL2317 phase 2 study

Renato Bassan, ¹ Sabina Chiaretti, ² Irene Della Starza, ^{2,3} Alessandra Santoro, ⁴ Orietta Spinelli, ⁵ Manuela Tosi, ⁵ Loredana Elia, ² Deborah Cardinali, ² Maria Stefania De Propris, ⁶ Matteo Piccini, ⁶ Federico Lussana, ^{5,7} Mario Annunziata, ⁸ Patrizia Chiusolo, ^{9,10} Patrizia Zappasodi, ¹¹ Erika Borlenghi, ¹² Matteo Leoncin, ¹ Catello Califano, ¹³ Monica Bocchia, ¹⁴ Francesco Di Ratinondo, ¹⁵ Francesco Grimaldi, ¹⁶ Mario Tiribelli, ¹⁷ Anna Candoni, ^{17,18} Albana Lico, ¹⁹ Emesta Audisio, ²⁰ Monia Lunghi, ²¹ Anna Maria Mianulli, ²² Mariangela Di Trani, ² Valentina Arena, ²³ Monica Messina, ²³ Alfonso Piciocchi, ²³ Paola Fazi, ²³ Alessandro Rambaldi, ^{5,7} and Robin Foà²

	Treatment phase	Drugs	Dosing and route	Days	Treatment phase
	Prephase PDN CY		20 mg/m²/bd IV 300 (200 >55 y) mg/m²/d IV over 30'	–5 to –1 –3 to –1	HD cycle 5
		IDR VCR	12 (9 > 55 y) mg/m²/d IV over 30' 1.4 mg/m²/d (max. 2) IV push	1,2 1,8,15,22	
	Cycle 1 Dex PEG-Asp		5 mg/m²/bd IV over 5′ q12h 1500 (1000 >55 y) IU/m²/d IV over 120′	1-5,15-19	Cycle 8
		IDR 12 (1.4 mg/m² (max. 2) IV push 12 (9 >55 y) mg/m²/d IV over 30' 1000 mg/m²/d IV over 60'	1,8 (no course 2) 1	
	Cycles 2.4.6	Dex	5 mg/m²/bd PO	1-5	
	Cycles 2,4,6	Ara-C PEG-Asp 6-Mp IT (†)	75 mg/m²/d SC 2000 (1000 >55 y) IU/m²/d IV over 120′ 60 mg/m²/d PO	2-5 8 (no course 4) 1-10 1,15 (course 2)	Maintenance cycles 1,3,5,7,9,11
	HD cycles MTX 3,7 Blinatumomab		2500 (1500 >55 y) mg/m²/d IV over 24 h; FAR 2000 mg/m²/bd over 120'	1 3,4	2,4,6,8,10,12
			28 μg/d clV	1-28	
		Dex Levetiracetam IT (†)	20 mg/d IV 500 mg/bd PO	1 1-28 –1	13-24

	Treatment phase	Drugs	Dosing and route	Days
	115 - 1 - 5	MTX	2500 (1500) mg/m²/d IV over 24h: FAR	1
Н	HD cycle 5	PEG-Asp	2000 (1000 > 55 y) IU/m ² /d IV over 120'	3
		6-MP	25 mg/m²/d PO	8-18
		VCR	1.4 mg/m²/d (max. 2) IV push	1,8
		IDR	10 (7.5 >55 y) mg/m ² /d IV over 30'	1,8
	Cycle 8	Dex	5 mg/m²/bd PO	1-5
.	Cycle o	CY	300 (200 >55 y) mg/m²/d IV over 30'	1-3
)		PDN	20 mg/m²/bd PO	8-12
		IT (↑)		1,15
	Maintenance	CY	100 mg/m²/d PO	1-4
	cycles	6-MP	75 mg/m²/d PO	8-28
	,	MTX	15 mg/m²/d PO/IM	8,15,22
	1,3,5,7,9,11	IT (1)		1 (courses 3,5)

1 mg/m²/d (max. 2) IV push 20 mg/m²/bd PO

75 mg/m²/d PO

75 mg/m²/d PO

15 mg/m²/d PO/IM

15 mg/m²/d PO/IM

6-MP

MTX

IT (1)

6-MP

MTX

*After TP2MRD and Blin-1 (early):
VHR, HR MRD unknown, SR/HR with TP2MRD ≥ 10⁻⁴ (any of these)

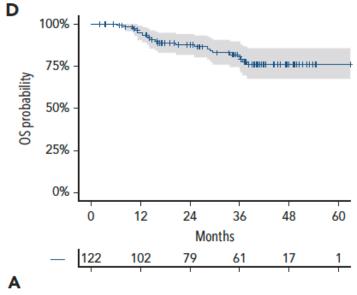
After TP4MRD and Blin-2:
SR/HR TP2 MRD- but TP3 or TP4 MRD+

Blood 2025;145:2447

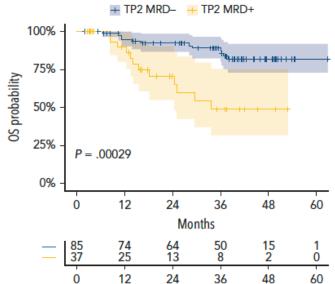
Venezia | 20 novembre 2025

Ospedale SS. Giovanni & Paolo

1-5


8-28

8-28


1,8,15,22

8,15,22

1 (courses 2,4)

3-year OS of patients receiving blinatumomab = **82%**

3-year OS of patients who were TP2 MRDneg = **89%**

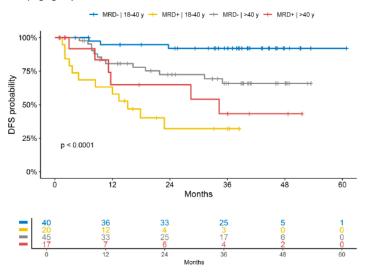
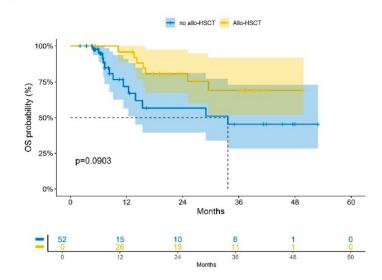



Figure S7. OS according to Simon-Makuch statistics of 52 blinatumomab-treated and HSCT-eligible patients.

Patient group	12 Months	24 Months	36 Months
No HSCT or censoring at allograft	72% (57%,91%)	57% (40%, 81%)	45% (28%, 73%)
HSCT	96%(89%,100%)	81% (67%, 97%)	69% (52%, 92%)

Ex vivo cell growth predicts outcome

BLOOD

The Journal of The American Society of Hematology

VOL. 48, NO. 6

DECEMBER 1976

A Simplified In Vitro Classification for Prognosis in Adult Acute Leukemia: The Application of In Vitro Results in Remission-predictive Models

> By Gary Spitzer, Karel A. Dicke, Edmund A. Gehan, Terry Smith, Kenneth B. McCredie, Barthel Barlogie, and Emil J Freireich

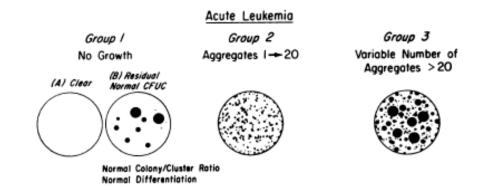


Fig. 1. Schematic representation of the growth pattern of normal bone marrow and the three subdivisions of acute leukemic growth.

CR

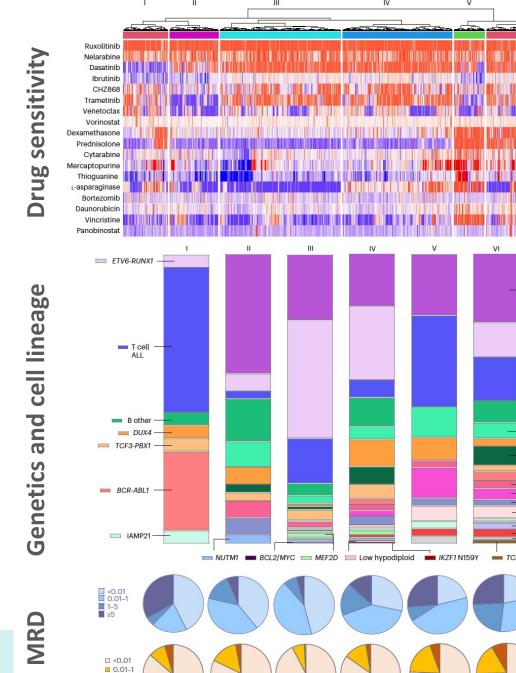
4/7

1/1

0/2

nature medicine

Article


https://doi.org/10.1038/s41591-022-02112-7

Pharmacotypes across the genomic landscape of pediatric acute lymphoblastic leukemia and impact on treatment response

Received: 4 April 2022

Shawn H. R. Lee^{1,2,3,8}, Wenjian Yang [©] ^{1,8}, Yoshihiro Gocho¹, August John [©] ¹,
Lauren Rowland¹, Brandon Smart¹, Hannah Williams [©] ¹, Dylan Maxwell¹,
Jeremy Hunt¹, Wentao Yang¹, Kristine R. Crews [©] ¹, Kathryn G. Roberts [©] ⁴,
Sima Jeha⁵, Cheng Cheng ⁶, Seth E. Karol [©] ⁵, Mary V. Relling [©] ¹,
Gary L. Rosner [©] ⁷, Hiroto Inaba [©] ⁵, Charles G. Mullighan [©] ⁴, Ching-Hon Pui [©] ⁵,
William E. Evans [©] ^{1,9} & Jun J. Yang [©] ^{1,5,9}

0.75 0.50

0.25

Hyperdiploid

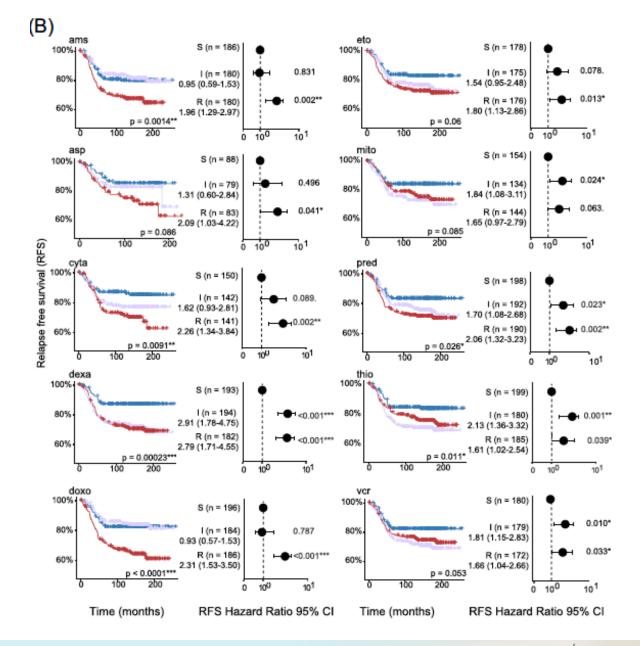
PAX5alt

KMT2A

ETP
ETV6-RUNX1-like
BCR-ABL1-like
Near haploid
ZNF384
PAX5 P8OR

Received: 22 December 2024 Accepted: 28 May 2025

DOI: 10.1002/hem3.70176


HemaSphere eha

ARTICLE

Ex vivo drug responses and molecular profiles of 597 pediatric acute lymphoblastic leukemia patients

```
Anna Pia Enblad<sup>1,2,3</sup> | Olga Krali<sup>1,2</sup> | Henrik Gezelius<sup>1,2</sup> | Anders Lundmark<sup>1,2</sup> |
Kristin Blom<sup>1</sup> | Claes Andersson<sup>1</sup> | Josefine Palle<sup>3</sup> | Britt-Marie Frost<sup>3</sup> |
Samppa Ryhänen<sup>4,5</sup> | Trond Flægstad<sup>5,6</sup> | Ólafur G. Jónsson<sup>5,7</sup> |
Kjeld Schmiegelow<sup>5,8</sup> | Mats Heyman<sup>5,9</sup> | Arja Harila<sup>3,5</sup> | Peter Nygren<sup>10</sup> |
Rolf Larsson<sup>1</sup> | Gudmar Lönnerholm<sup>3</sup> | Jessica Nordlund<sup>1,2</sup> 0
```


Venezia | 20 novembre 2025

SEPTEMBER 29, 2025

Dr. Anthony Letai appointed as Director of **National Cancer Institute**

Society for Precision Medicine

Precision medicine in AML: Function plus -omics is better than either alone

Anthony Letai 1,2,3,*

Dana-Farber Cancer Institute, Boston, MA 02215, USA

²Harvard Medical School, Boston, MA 02115, USA

³Broad Institute, Cambridge, MA 02142, USA

*Correspondence: anthony_letai@dfci.harvard.edu

https://doi.org/10.1016/j.ccell.2022.07.009

Perspective

Functional precision oncology: Testing tumors with drugs to identify vulnerabilities and novel combinations

Anthony Letai, 1,2 Patrick Bhola, 2,3 and Alana L. Welm 4,* ¹Dana-Farber Cancer Institute, Boston, MA 02215, USA

²Harvard Medical School, Boston, MA 02215, USA ³Brigham and Women's Hospital, Boston, MA 02115, USA

⁴Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA

*Correspondence: alana.welm@hci.utah.edu https://doi.org/10.1016/j.ccell.2021.12.004

Seyfried et al. Cell Death and Disease (2019)10:571 https://doi.org/10.1038/s41419-019-1801-0

Cell Death & Disease

ARTICLE

Open Access

Prediction of venetoclax activity in precursor B-ALL by functional assessment of apoptosis signaling

Felix Seyfried¹, Salih Demir¹², Rebecca Louise Hörl¹, Felix Uli Stirnweiß^{1,2}, Jeremy Ryan 6, Annika Scheffold⁴, Mariana Villalobos-Ortiz³, Elena Boldrin¹², Julia Zinngrebe¹, Stefanie Enzenmüller¹, Silvia Jenni⁵, Yi-Chien Tsai⁵, Beat Bornhauser⁵, Axel Fürstberger⁶, Johann Michael Kraus⁶, Hans Armin Kestler⁶, Jean-Pierre Bourguin⁵, Stephan Stilgenbauer⁴, Anthony Letai³, Klaus-Michael Debatin¹ and Lüder Hinrich Meyer¹

Al-optimized drug discovery

DrugReflector*

An artificial intelligence (AI) model trained on complex data from human cells. The AI method incorporates gene-expression data to speed up drug discovery

Up to 17 times more effective at finding relevant compounds than randomly selecting compounds from a chemical library

*deep-learning model on publicly available data about how each of nearly 9,600 chemical compounds perturbs gene activity in more than 50 kinds of cells.

Active learning framework leveraging transcriptomics identifies modulators of disease phenotypes BENJAMIN DEMEO ET AL. *SCIENCE* 23 Oct 2025 First Release DOI: 10.1126/science.adi8577

In the end

- First line B-ALL immunotherapy works: Rituximab, Inotuzumab, Blinatumomab (various combinations)
- ➤ Blinatumomab: Most effective in early MRD responders in age range 18-70 years (ECOG-ACRIN 1910 and GIMEMA 2317)
 - Mind resistance mechanisms: from dysfunctional T cells to CD19 target disruption

and, possibly, circular extrachromosomal DNA (ESC) In B-ALL, ESC replicates, persists and triggers ESC-mediated mutations

associated with leukemia relapse(Gao Z et al, Nature 2025)

➤ Warning: Individual drug resistance/sensitivity profiles largely overlooked by adult ALL experts. Time and room for improved precision medicine plus 'rapid' detection of new effective agents

ESC: Jk5-Vk3